On a Class of Nilpotent Distributions
نویسندگان
چکیده
منابع مشابه
Nilpotent bases of distributions
When modelling controlled dynamical systems one commonly chooses individual control variables u1, . . . um which appear natural from a physical, or practical point of view. In the case of nonlinear models evolving on R (or more generally, an analytic manifold M) that are affine in the control, such a choice corresponds to selecting vector fields f0, f1, . . . fm:M 7→ TM , and the system takes t...
متن کاملOn Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کاملNilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems
This paper develops a constructive method for finding a nilpotent basis for a special class of smooth nonholonomic distributions. The main tool is the use of the Goursat normal form theorem which arises in the study of exterior differential systems. The results are applied to the problem of finding a set of nilpotent input vector fields for a nonholonomic control system, which can then used to ...
متن کاملNilpotent Bases for Nonholonomic Distributions
This paper develops a constructive method for nding a nilpotent basis for a special class of smooth nonholonomic distributions. The main tool is the use of the Goursat normal form theorem which arises in the study of exterior di erential systems. The results are applied to the problem of nding a set of nilpotent input vector elds for a nonholonomic control system, which can then used to constru...
متن کاملOn a Class of Multiplicity-Free Nilpotent KC-Orbits
An action of an algebraic reductive groupG on an affine varietyM is calledmultiplicity-free if the multiplicity of any particular irreducible representation of G in the space C [M ] of regular functions on M is at most one: In [1], Kac provides a complete list of multiplicity-free actions for the case when G is a connected reductive algebraic group and M is a finite-dimensional vector space upo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2011
ISSN: 1027-5487
DOI: 10.11650/twjm/1500406239